Monte Carlo tests of the Rasch model based on scalability coefficients

KB Christensen
S Kreiner

Dep. of Biostatistics, Univ. of Copenhagen
Item response theory (IRT)
Several items measuring a single unidimensional latent variable (trait, ability, ...). Items are categorical, often dichotomous.

IRT models can be parametric or nonparametric. Used for measurement and for validation.
The Rasch model1,2 simplest parametric IRT model (1PL).

\begin{equation}
Pr(X_i = 1|\theta) = \frac{\exp(\theta - \beta_i)}{1 + \exp(\theta - \beta_i)}
\end{equation}

Implies requirements: unidimensionality, absence of differential item functioning, local independence, and equal logistic item discrimination.

Used for validation.

Is equal discrimination necessary

1PL

2PL
Rasch advocated, but never implemented, exact conditional inference: Study distribution of test statistic independent of person and item parameters.

Computing \(p\)-values feasible using MCMC sampling techniques.
Distribution of data matrix $X = (X_{vi})_{v=1,...,N,i=1,...,I}$ determined by $\theta = (\theta_1, \ldots, \theta_N)$ and $\beta = (\beta_1, \ldots, \beta_I)$.

$R_v = X_{v.} = \sum_j X_{vi}$ and $S_i = X_{.i} = \sum_i X_{vi}$ sufficient.

$P(X|R, S)$ uniform distribution over (very large) set $\mathcal{N}(R, S)$ of all item response matrices with these margins.
Exact tests

X_0 observed data, R_0, S_0 observed margins, $T = T(X)$ any test statistic, p-value defined as conditional probability

$$Pr(T(X) \geq T(X_0)|R_0, S_0) = \frac{\sum_{X \in \mathcal{N}(R,S)} 1(T(X) \geq T(X_0))}{\left[\frac{R}{S}\right]}.$$ \hspace{1cm} (2)

calculate $T(Y)$ for all $Y \in \mathcal{N}(R, S)$ count how many are larger than $T(Y_0)$. This is not feasible, but ...
... MCMC estimates of p-values can be computed.

Simple technique based swapping of item responses9–12

\[
\begin{bmatrix}
\vdots & \vdots & & \\
\vdots & 1 & \cdots & 0 & \cdots \\
\vdots & & \ddots & & \vdots \\
\vdots & \cdots & \cdots & 0 & \cdots \\
\vdots & & & 1 & \cdots \\
\vdots & & & & \ddots
\end{bmatrix}
\mapsto
\begin{bmatrix}
\vdots & \vdots & & \\
\vdots & 0 & \cdots & 1 & \cdots \\
\vdots & & \ddots & & \vdots \\
\vdots & \cdots & \cdots & 1 & \cdots \\
\vdots & & & 0 & \cdots \\
\vdots & & & & \ddots
\end{bmatrix}.
\]

Nonparametric IRT

Mokken model of (double) monotonicity\(^3-6\): unidimensionality, local independence, nondecreasing (and nonintersecting) item response functions.

Rasch model is a special case.

Idea: Use nonparametric IRT to test Rasch model.

Scalability coefficients summarize number of Guttman errors\(^7\):

wrong answer to an easy item, correct answer to difficult item.

Guttman errors. Ordering persons and items.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\vdots & \vdots \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
Marginal probabilities

\[\pi_i(x) = \int Pr(X_i = x|\theta) dP(\theta) \]

ordering \(\pi_1(1) \geq \pi_2(1) \geq \ldots \geq \pi_I(1) \). For item pairs

\[\pi_{ik}(x_i, x_k) = \int Pr(X_i = x_i, X_k = x_k|\theta) dP(\theta). \]

Probability of Guttman error \(e_{ik} = \begin{cases}
\pi_{ik}(1, 0) & \text{if } i < k \\
\pi_{ik}(0, 1) & \text{if } i > k
\end{cases} \)

Expected (marginal independence) \(e_{ik}^{(0)} = \begin{cases}
\pi_i(1 - \pi_k) & \text{if } i < k \\
(1 - \pi_i)\pi_k & \text{if } i > k
\end{cases} \).
Item coefficient H_i (based on Loevingers $H^{13,14}$)

$$H_i = 1 - \frac{\sum_{k \neq i} e_{ik}}{\sum_{k \neq i} e_{ik}^{(0)}}$$

Expected values, CI’s and p-values from the exact conditional distribution of H_i given observed margins R_0, S_0.

Note: Too few Guttman errors also violation of Rasch model.

H_i large \leftrightarrow few Guttman errors \leftrightarrow item discrimination?

Scalability coefficient applied to transposed data matrix yields test of intersecting item response functions.15 Observed percentage of persons with negative H_v^T values compared to expected.

Total scalability coefficients H and H^T cannot be used for exact test of the Rasch model (because the total number of Guttman errors is invariant under switches).

Danish study of mobility in elderly, 731 70-year old. H_i values

<table>
<thead>
<tr>
<th>Item</th>
<th>Obs.</th>
<th>Exp. (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking Indoors</td>
<td>0.856</td>
<td>0.867 (0.848, 0.881)</td>
</tr>
<tr>
<td>Walking outside nice weather</td>
<td>0.874</td>
<td>0.835 (0.822, 0.849)</td>
</tr>
<tr>
<td>Walking outside poor weather</td>
<td>0.871</td>
<td>0.821 (0.806, 0.835)</td>
</tr>
<tr>
<td>Walking on stairs</td>
<td>0.751</td>
<td>0.833 (0.819, 0.847)</td>
</tr>
<tr>
<td>Getting outside</td>
<td>0.870</td>
<td>0.853 (0.832, 0.870)</td>
</tr>
<tr>
<td>Getting up</td>
<td>0.864</td>
<td>0.892 (0.864, 0.816)</td>
</tr>
</tbody>
</table>
MCMC estimates of $P(H_i \leq H_{i,obs}|R_0, S_0)$ and $P(H_i \geq H_{i,obs}|R_0, S_0)$, cf. (2), constitute strong evidence against the model.

Note: Multiple testing - false detection rate controlled.16

No evidence against double monotony: 0.137\% of persons have negative H^T_v (expected percentage is 0.065\%, $p = 0.396$), Birnbaum model should not uncritically be chosen. Local dependence likely to be cause of misfit.

Testing Rasch assumption of equal item discrimination.

Sample correlation $d_i = V(X_i, R)/\sqrt{V(X_i)V(R)}$ traditional measure of item discrimination.\(^{17}\) Chen & Small (2005) propose

$$Y = \sum_{i=1}^{I} \frac{[d_i - E(d_i|R, S)]^2}{V(d_i|R, S)}$$

(3)

as intuitive test statistic - more powerful than Q_1^{18} and R_{1c}^{19} tests statistics.

Simulation study.

θ's for 250 persons (standard normal distribution), 100 tables Birnbaum items (difficulty zero, discriminations 1.0, 1.1, 1.2, 1.3, 1.4, 1.5).

Comparing H_i and H^T to (3)

H_i Rejection rate 31%
H^T Rejection rate 7%
Y Rejection rate 16% [Chen & Small, 2005, Table 6]