Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes

Serge GUILLAS

Rapport Technique n°1 (2001)
Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes

Serge GUILLAS

Université Paris VI, ISUP-LSTA
Tour 45-55, Boîte 158
4, place Jussieu, 75252 Paris Cedex 05

Avril 2001
Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes

Serge Guillas
Université Paris VI (L.S.T.A.) and École des Mines de Douai
Avril 2001

Abstract
We show the consistency in the L^2 sense of an estimator of the autocorrelation operator ρ in the autoregressive Hilbertian of order one model $X_n = \rho(X_{n-1}) + \varepsilon_n$. Two main cases are considered, and we obtain upper bounds for the corresponding rates.

1 Introduction

Let H be a real and separable Hilbert space with norm $\| \cdot \|$. Let ρ be a bounded operator on H. We suppose that $\sum_{n=0}^{\infty} \| \rho^n \| < \infty$, where $\| \cdot \|_L$ is the linear norm of operators in H. Let (ε_n) be a strong Hilbertian white noise (SWN), that is a sequence of i.i.d. random variables with values in H satisfying

$$\forall n \in \mathbb{Z}, E\varepsilon_n = 0, 0 < E\|\varepsilon_n\|^2 = \sigma^2 < \infty.$$

We will consider in this paper the autoregressive Hilbertian of order one model, denoted by $ARH(1)$. It is the unique stationary solution of the equation

$$X_n = \rho(X_{n-1}) + \varepsilon_n. \quad (1)$$

See [1] for an extensive study of the $ARH(1)$ model.

Such Hilbertian processes can theoretically and practically handle situations where continuous-time processes are involved. Precisely, if $(x_t, t \in \mathbb{R})$ is a continuous-time process with continuous paths, then

$$X_k(t) = x_{k\delta+t}, 0 \leq t \leq \delta, k \in \mathbb{Z}$$

is a discrete $L^2([0, \delta])$-valued process. Various applications have already been made. For example, Cavallini et al. (1994) made forecasts of electricity consumption; and, by means of smoothing splines, Besse and Cardot (1996) predicted traffic while Besse et al. (2000) made forecasts of the climatic variation called el niño.

Several extensions of the $ARH(1)$ model have been made. We may mention $ARH(p)$ models - see [8]-, and $ARH(1)$ models with exogenous variables - see [6]. Besides, Cardot et al. (1999) studied a regression model with similar techniques.
Let us denote by C and D respectively the covariance and cross-covariance operator of the stationary process X:

$$C(x) = E \langle X_0, x \rangle, D(x) = E \langle X_0, X_1 \rangle.$$

It can easily be shown that C is a symmetric positive and compact operator. Defining for all elements u, v in H the operator $u \otimes v$ by

$$u \otimes v(x) = \langle u, x \rangle v, x \in H,$$

we then obtain the decomposition in a complete orthonormal basis (v_j) of H:

$$C = \sum_{j=1}^{\infty} \lambda_j v_j \otimes v_j,$$

where (λ_j) is a decreasing sequence of positive numbers such that

$$\sum_{j=1}^{\infty} \lambda_j = E \|X_0\|^2 < \infty.$$

The estimation of ρ is a rather intricate problem. Indeed, classical techniques such as maximum likelihood or least squares are not accurate in this Hilbertian context. A technique due to Bosq (2000) works as follows: estimate the eigenvectors (v_j) and the eigenvalues (λ_j) of the covariance operator and try to use the relation $D = \rho C$ in order to get ρ. C_n and D_n are the following respective unbiased estimators of D and C:

$$C_n = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i, D_n = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i \otimes X_{i+1},$$

and we denote by (v_{jn}) and (λ_{jn}) the empirical eigenelements of C_n. We would like to define an estimator of ρ as $\rho_n = D_n C_n^{-1}$, but C_n is not invertible in general, so we have to make a projection on the space H_{k_n} spanned by the k_n first eigenvectors of C_n, obtaining this way an invertible operator in H_{k_n}. Naturally, the choice of k_n may not be easy and is usually done empirically or by a cross validation procedure. In this paper, we will give some ideas about this choice in relatively precise situations.

Bosq (2000) showed almost sure consistency of ρ_n. Mas (1999) obtained results about limit in distribution of ρ_n. The purpose of this paper is to establish consistency of a slight modification of ρ_n in the L^2 mode, that is to say by considering $E \|\hat{\rho}_{n,a} - \rho\|_2^2$, and to obtain rates of convergence when the eigenvectors are known and when they are not.

While in the finite dimensional case this rate of convergence may reach a $\frac{1}{n}$-rate when the eigenvalues of C are bounded by below - see [1, section 8.1] -, we will find in the infinite dimensional case where the eigenvectors are known a $n^{-1/3}$-rate, and in the general case a $n^{-1/4}$-rate.

In both cases, we will assume the existence of a sequence (a_n) satisfying:

- $0 < a_n \leq 1, n \in \mathbb{N}$.
- $\exists 0 < \beta < 1, a_n \leq \beta \lambda_{k_n}, n \in \mathbb{N}$.

We also make use of the following assumptions:

(H_1): X is a $ARH(1)$ such that $E \|X_0\|^4 < \infty$.
(H_2): For all j, $\lambda_j > 0$.
(H_3): For all j, $\lambda_j > \lambda_{j+1}$.

2
2 Known eigenvectors

The case considered here is the case where the eigenvectors \(v_j \) of \(C \) are known. Consider the following unbiased estimators of the \((\lambda_j) \):

\[
\hat{\lambda}_{j,n} = \frac{1}{n} \sum_{i=1}^{n} (X_i, v_j)^2.
\]

For consistency of the \(\hat{\lambda}_{j,n} \), see [1].

Consider now the following estimators of \(C \):

\[
\hat{C}_n = \sum_{j=1}^{k_n} \hat{\lambda}_{jn} v_j \otimes v_j, \quad \hat{C}_{n,a} = \sum_{j=1}^{k_n} \max(\hat{\lambda}_{jn}, a_n) v_j \otimes v_j.
\]

Let us define

\[
\hat{\rho}_{n,a} = \pi^{k_n} D_n \hat{C}^{-1}_{n,a} \pi^{k_n}
\]

where \(\pi^{k_n} \) denotes the orthogonal projector over \(H_{k_n} \), and

\[
\hat{C}^{-1}_{n,a} = \sum_{j=1}^{k_n} \left[\max(\hat{\lambda}_{jn}, a_n) \right]^{-1} v_j \otimes v_j.
\]

Our goal is to find an upper bound for \(E \| \hat{\rho}_{n,a} - \rho \|^2_F \).

Lemma 1 Under \((H_1)\) and \((H_2)\),

\[
E \| \hat{\rho}_{n,a} - \rho \|^2_F \leq \frac{c_0}{n a_n^2} + \frac{c_1}{n \lambda_k a_n^2} + \frac{c_2}{n \lambda_k^2 a_n^2} + 2 \lambda_k^2 + 1.
\] (2)

Proof. First, write the decomposition

\[
\hat{\rho}_{n,a} - \rho = \left(\pi^{k_n} D_n \hat{C}^{-1}_{n,a} \pi^{k_n} - \pi^{k_n} \rho \pi^{k_n} \right) + \left(\pi^{k_n} \rho \pi^{k_n} - \rho \right).
\]

Observe now that

\[
\pi^{k_n} \rho \pi^{k_n}(x) = \pi^{k_n} D \sum_{j=1}^{k_n} \lambda_j^{-1} (v_j, x) v_j
\]

and let us set

\[
C_{\pi^{k_n}} = \sum_{j=1}^{k_n} \lambda_j v_j \otimes v_j
\]

\[
C^{-1}_{\pi^{k_n}} = \sum_{j=1}^{k_n} \lambda_j^{-1} v_j \otimes v_j.
\]

Accordingly,

\[
\hat{\rho}_{n,a} - \rho = \left(\pi^{k_n} D_n \hat{C}^{-1}_{n,a} \pi^{k_n} - \pi^{k_n} D C^{-1}_{\pi^{k_n}} \pi^{k_n} \right) + \left(\pi^{k_n} \rho \pi^{k_n} - \rho \right).
\] (3)
The first term may be written
\[\pi^{k_n} D_n \hat{C}_{n,a}^{-1} - \pi^{k_n} D C_{\pi^{k_n}}^{-1} \pi^{k_n} = \pi^{k_n} \left(D_n \hat{C}_{n,a}^{-1} - D C_{\pi^{k_n}}^{-1} \right) \pi^{k_n} \]
\[= \pi^{k_n} \left[(D_n - D) \hat{C}_{n,a}^{-1} + D \left(\hat{C}_{n,a}^{-1} - C_{\pi^{k_n}}^{-1} \right) \right] \pi^{k_n} \]
\[= \pi^{k_n} \left[(D_n - D) \hat{C}_{n,a}^{-1} - D \hat{C}_{n,a}^{-1} \left(\hat{C}_{n,a} - C_{\pi^{k_n}} \right) C_{\pi^{k_n}}^{-1} \right] \pi^{k_n} \]
hence,
\[\left\| \pi^{k_n} D_n \hat{C}_{n,a}^{-1} - \pi^{k_n} D C_{\pi^{k_n}}^{-1} \pi^{k_n} \right\|_L^2 \]
\[\leq 2 \left\| D_n - D \right\|_L^2 \left\| \hat{C}_{n,a}^{-1} \right\|_L^2 + 2 \left\| D \right\|_L^2 \left\| \hat{C}_{n,a}^{-1} \right\|_L \left\| C_{\pi^{k_n}}^{-1} \right\|_L \left\| \hat{C}_{n,a} - C_{\pi^{k_n}} \right\|_L \]
\[\leq 2a_n^{-2} \left\| D_n - D \right\|_L^2 + 2a_n^{-2} \left\| D \right\|_L^2 \left\| C_{\pi^{k_n}}^{-1} \right\|_L \left\| \hat{C}_{n,a} - C_{\pi^{k_n}} \right\|_L^2 \]
because
\[\left\| \hat{C}_{n,a}^{-1} \right\|_L \leq a_n^{-1}. \]
Thus, by (3),
\[E \left\| \hat{\rho}_{n,a} - \rho \right\|_L^2 \leq 2 \left[2a_n^{-2} E \left\| D_n - D \right\|_L^2 + 2a_n^{-2} \left\| D \right\|_L^2 \left\| C_{\pi^{k_n}}^{-1} \right\|_L \left\| \hat{C}_{n,a} - C_{\pi^{k_n}} \right\|_L^2 \right] \]
\[+ 2E \left\| \rho \pi^{k_n} - \rho \right\|_L^2. \tag{4} \]
The second term of the right-hand side is easily bounded from above by $2\lambda^2_{k_n+1}$. For the first term \cite[Th. 4.8]{1} gives
\[E \left\| D_n - D \right\|_L^2 = O \left(\frac{1}{n} \right), \]
and clearly
\[\left\| C_{\pi^{k_n}}^{-1} \right\|_L^2 = \frac{1}{\lambda^2_{k_n}}. \]
Moreover,
\[E \left\| \hat{C}_{n,a} - C_{\pi^{k_n}} \right\|_L^2 \leq 2E \left(\left\| \hat{C}_{n,a} - \hat{C}_n \right\|_L 1_{\hat{C}_{n,a} \neq \hat{C}_n} \right) + 2E \left(\left\| \hat{C}_n - C_{\pi^{k_n}} \right\|_L 1_{\hat{C}_{n,a} = \hat{C}_n} \right) \]
\[+ E \left(\left\| \hat{C}_{n,a} - C_{\pi^{k_n}} \right\|_L 1_{\hat{C}_{n,a} = \hat{C}_n} \right). \]
Now, we find an upper bound to $P \left(\hat{C}_{n,a} \neq \hat{C}_n \right)$, knowing that the sequence \((\hat{\lambda}_{jn}) \) is not decreasing with respect to \(j \). Observe that
\[P \left(\hat{C}_{n,a} \neq \hat{C}_n \right) = P \left(a_n > \min_{j=1,\ldots,k_n} \hat{\lambda}_{jn} \right). \]
Let us define the discrete random variable \(I_{kn} = \arg \min \{ \hat{\lambda}_{jn}, j = 1, \ldots, k \} \). We then obtain

\[
P \left(\hat{C}_{n,a} \neq \hat{C}_n \right) = P \left(a_n > \hat{\lambda}_{I_{kn}n} \right) \\
= P \left(\hat{\lambda}_{I_{kn}n} - \lambda_{I_{kn}} < a_n - \lambda_{I_{kn}} \right) \\
\leq P \left(\left| \hat{\lambda}_{I_{kn}n} - \lambda_{I_{kn}} \right| \geq (1 - \beta) \lambda_{I_{kn}} \right) \\
\leq P \left(\left| \hat{\lambda}_{I_{kn}n} - \lambda_{I_{kn}} \right| \geq (1 - \beta) \lambda_{kn} \right),
\]

so

\[
P \left(\hat{C}_{n,a} \neq \hat{C}_n \right) \leq P \left(\sup_{j=1, \ldots, k_n} \left| \hat{\lambda}_{jn} - \lambda_j \right| \geq (1 - \beta) \lambda_{kn} \right) \\
\leq \frac{K}{n(1 - \beta)^2 \lambda_{kn}^2}
\]

with a constant \(K > 0 \), applying the Chebychev inequality since

\[
E \left\| \hat{C}_n - C \right\|_L^2 \leq 2E \left\| \hat{C}_n - C_n \right\|_L^2 + 2E \left\| C_n - C \right\|_L^2
\]

and

\[
E \left\| \hat{C}_n - C_n \right\|_L^2 = E \left\| \sum_{j=1}^{k_n} \left[\hat{\lambda}_{jn} - \lambda_{jn} \right] v_j \otimes v_j \right\|_L^2 \\
\leq E \sup_{j=1, \ldots, k_n} \left| \hat{\lambda}_{jn} - \lambda_{jn} \right|^2 \leq 2E \sup_{j=1, \ldots, k_n} \left| \hat{\lambda}_{jn} - \lambda_j \right|^2 + 2E \sup_{j=1, \ldots, k_n} |\lambda_{jn} - \lambda_j|^2 \\
= O \left(\frac{1}{n} \right)
\]

by \([1, \text{Th. 4.4, Cor 4.5}]\), so by \([1, \text{Th. 4.1}]\)

\[
E \left\| \hat{C}_n - C \right\|_L^2 = O \left(\frac{1}{n} \right).
\]

Note that

\[
\left\| \hat{C}_{n,a} - \hat{C}_n \right\|_L^2 = \left\| \sum_{j=1}^{k_n} \left[\max \left(\hat{\lambda}_{jn}, a_n \right) - \hat{\lambda}_{jn} \right] v_j \otimes v_j \right\|_L^2 \leq a_n^2
\]

and that

\[
E \left\| \hat{C}_n - C_{\pi, kn} \right\|_L^2 = E \left\| \sum_{j=1}^{k_n} \left[\hat{\lambda}_{jn} - \lambda_j \right] v_j \otimes v_j \right\|_L^2 \\
\leq E \sup_{j=1, \ldots, k_n} \left| \hat{\lambda}_{jn} - \lambda_j \right|^2 \\
\leq E \left\| C_n - C \right\|_L^2 = O \left(\frac{1}{n} \right),
\]

by [1, Th. 4.4, Cor 4.5], so by [1, Th. 4.1]
Therefore we get, by (4)
\[E \|\hat{\rho}_{n,a} - \rho\|^2 \leq \frac{c_0}{na_n} + \frac{c_1}{n\lambda_k}\lambda_k^\gamma + \frac{c_2}{n\lambda_k^2 a_n^2} + 2\lambda_k^2. \]

\[\text{Theorem 1} \] Suppose that \((H_1)\) and \((H_2)\) hold, and that there exist \(\alpha > 0, 0 < \beta < 1, \varepsilon < 1/2\) and \(\gamma \geq 1\) such that
\[\alpha \frac{\lambda_k^\gamma}{n^{\varepsilon}} \leq a_n \leq \beta \lambda_k, \]
then
\[E \|\hat{\rho}_{n,a} - \rho\|^2 = O \left(\frac{1}{n(1-2\varepsilon)} \lambda_k^{2(1+\gamma)} \right) + O \left(\lambda_k^2 \right). \]

\[\text{Proof.} \] It is an easy consequence of (2), using the inequalities \(\alpha \frac{\lambda_k^\gamma}{n^{\varepsilon}} \leq a_n \) and \(\lambda_{k+1} \leq \lambda_k\). ■

\[\text{Remark 1} \] The optimal choice of \(\lambda_k\) is such that:
\[\lambda_k^2 = \frac{c}{n(1-2\varepsilon)\lambda_k^{2+2\gamma}}, \text{ i.e. } \lambda_k^{4+2\gamma} = \frac{c}{n(1-2\varepsilon)}, c > 0. \] (5)

The rate of convergence in quadratic mean is then of order
\[\lambda_k^2 \asymp n^{-(1-2\varepsilon)/(\gamma+2)}. \]

\[\text{Remark 2} \] When \(\varepsilon = 0\) and in the most favorable case where \(\gamma = 1\), the rate is of order \(n^{-1/3}\).

\[\text{Example 1} \] If \(\lambda_j = ar^j\), where \(a > 0\) and \(0 < r < 1\), by (5), we get
\[r^{(4+2\gamma)k_n} = \frac{d}{n(1-2\varepsilon)}, d > 0, \]
which yields
\[k_n = \left\lfloor \frac{\ln d - (1 - 2\varepsilon) \ln n}{(4 + 2\gamma) \ln r} \right\rfloor. \]

\[\text{Example 2} \] If \(\lambda_j = aj^{-\delta}\) where \(a > 0\) and \(\delta > 1\), by (9), we get
\[k_n = \left\lfloor e n^{(1-2\varepsilon)/(4+2\gamma)\delta} \right\rfloor, e > 0. \]
3 General Case

We consider here the empirical eigenelements of C given by

$$C_n(v_{j_n}) = \lambda_{j_n} v_{j_n},$$

where $\lambda_{1n} \geq \ldots \geq \lambda_{nn} \geq 0 = \lambda_{n+1,n} = \lambda_{n+1,n} = \ldots$, and (v_{j_n}) constitutes an orthonormal system of H. We denote \tilde{H}_{k_n} the space spanned by $v_{1n}, \ldots, v_{k_n,n}$. We assume in this section that each eigensubspace associated to the eigenvectors λ_j is one dimensional. Consider the following empirical eigenvectors for identifiability reasons:

$$v'_{j_n} = \text{sgn} \langle v_{j_n}, v_j \rangle v_j, j \geq 1.$$

Consider the following estimators of C:

$$\tilde{C}_n = k_n \sum_{j=1}^{k_n} \lambda_{j_n} v_{j_n} \otimes v_{j_n}, \tilde{C}_{n,a} = k_n \sum_{j=1}^{k_n} \max(\lambda_{j_n}, a_n) v_{j_n} \otimes v_{j_n}.$$

Let us set

$$\tilde{\rho}_{n,a} = \tilde{\pi}^{k_n} D_n \tilde{C}_{n,a}^{-1} \pi^{k_n}$$

where $\tilde{\pi}^{k_n}$ denotes the orthogonal projector over \tilde{H}_{k_n}, and

$$\tilde{C}_{n,a}^{-1} = k_n \sum_{j=1}^{k_n} [\max(\lambda_{j_n}, a_n)]^{-1} v_{j_n} \otimes v_{j_n}.$$

We will show analogous results as in the previous section, using only slightly different techniques. We will use in the sequel the following numbers defined under (H_3):

$$\Lambda_{k_n} = \sup_{j=1, \ldots, k_n} \frac{1}{\lambda_j - \lambda_{j+1}},$$

see [1] p. 107. Now we can give an upper bound for $E \| \tilde{\rho}_{n,a} - \rho \|_2^2$.

Lemma 2 Under $(H_1), (H_2)$ and (H_3)

$$E \| \tilde{\rho}_{n,a} - \rho \|_2^2 \leq \frac{c_0'}{n a_n^2} + \frac{c_1'}{n \lambda_{k_n}^2} + \frac{c_2' \Lambda_{k_n}^2}{n \lambda_{k_n}^2 a_n^2} + \frac{c_3' \Lambda_{k_n}^2}{n \lambda_{k_n}^2} + 2 \lambda_{k_n+1}^2$$

Proof. First, let us denote

$$C_{\pi^{k_n}} = k_n \sum_{j=1}^{k_n} \lambda_j v_j \otimes v_j$$

$$C_{\pi^{k_n}}^{-1} = k_n \sum_{j=1}^{k_n} \lambda_j^{-1} v_j \otimes v_j.$$

and write

$$\tilde{\rho}_{n,a} - \rho = \left(\pi^{k_n} D_n C_{\pi^{k_n}}^{-1} \pi^{k_n} - \pi^{k_n} D C_{\pi^{k_n}}^{-1} \pi^{k_n} \right) + \left(\pi^{k_n} D C_{\pi^{k_n}}^{-1} \pi^{k_n} - \pi^{k_n} D C_{\pi^{k_n}}^{-1} \pi^{k_n} \right) \pi^{k_n}$$

$$+ \left(\pi^{k_n} D C_{\pi^{k_n}}^{-1} \pi^{k_n} - \rho \right).$$
The first term may be written
\[
\tilde{z}^k \pi D_n \tilde{C}_{n,a}^{-1} \pi^k - \tilde{z}^k \pi D \tilde{C}_{\pi a}^{-1} \pi^k = \tilde{z}^k \left(D_n \tilde{C}_{n,a}^{-1} - D \tilde{C}_{\pi a}^{-1} \right) \pi^k
\]
\[
= \tilde{z}^k \left[(D_n - D) \tilde{C}_{n,a}^{-1} + D \left(\tilde{C}_{n,a}^{-1} - C_{\pi a}^{-1} \right) \right] \pi^k
\]
\[
= \tilde{z}^k \left[(D_n - D) \tilde{C}_{n,a}^{-1} - D \tilde{C}_{n,a}^{-1} \left(\tilde{C}_{n,a} - C_{\pi a} \right) C_{\pi a}^{-1} \right] \pi^k,
\]
hence
\[
\| \tilde{z}^k \pi D_n \tilde{C}_{n,a}^{-1} \pi^k - \tilde{z}^k \pi D \tilde{C}_{\pi a}^{-1} \pi^k \|_L^2 \\
\leq 2 \| D_n - D \|_L^2 \| \tilde{C}_{n,a}^{-1} \|_L^2 + 2 \| D \|_L^2 \| \tilde{C}_{n,a}^{-1} \|_L^2 \| C_{\pi a}^{-1} \|_L^2 \| \tilde{C}_{n,a} - C_{\pi a} \|_L^2
\]
\[
\leq 2a_n^{-2} \| D_n - D \|_L^2 + 2a_n^{-2} \| D \|_L^2 \| C_{\pi a}^{-1} \|_L^2 \| \tilde{C}_{n,a} - C_{\pi a} \|_L^2.
\]
Thus, by (7),
\[
E \| \tilde{\rho}_{n,a} - \rho \|_L^2 \leq 2 \left[2a_n^{-2} E \| D_n - D \|_L^2 + 2a_n^{-2} \| D \|_L^2 \| \tilde{C}_{n,a} - C_{\pi a} \|_L^2 \right] + 2E \| \tilde{z}^k \pi D \tilde{C}_{\pi a}^{-1} \pi^k - \pi^k \pi D \tilde{C}_{\pi a}^{-1} \pi^k \|_L^2 + 2E \| \pi^k \pi D \tilde{C}_{\pi a}^{-1} \pi^k - \rho \|_L^2.
\]

The third term of the right-hand side is easily bounded from above by $2\lambda_{k_n+1}^2$.

Let us now focus on the first term. \[1, \text{Th. 4.8}\] gives
\[
E \| D_n - D \|_L^2 = O \left(\frac{1}{n} \right),
\]
and clearly
\[
\| C_{\pi a}^{-1} \|_L^2 = \frac{1}{\lambda_{k_n}^2}.
\]

Moreover,
\[
E \| \tilde{C}_{n,a} - C_{\pi a} \|_L^2 \leq 2E \left(\| \tilde{C}_{n,a} - \tilde{C}_n \|_L^2 \mathbf{1}_{C_{n,a} \neq \tilde{C}_n} + \| \tilde{C}_n - C_{\pi a} \|_L^2 \mathbf{1}_{C_{n,a} \neq \tilde{C}_n} \right) + 2E \left(\| \tilde{C}_n - C_{\pi a} \|_L^2 \mathbf{1}_{C_{n,a} = \tilde{C}_n} \right)
\]
\[
+ E \left(\| \tilde{C}_{n,a} - C_{\pi a} \|_L^2 \mathbf{1}_{C_{n,a} = \tilde{C}_n} \right).
\]

Now, we find an upper bound for $P \left(\tilde{C}_{n,a} \neq \tilde{C}_n \right)$. Fortunately, the sequence (λ_{jn}) is
decreasing with respect to j. Therefore

$$
P(\tilde{C}_{n,a} \neq \tilde{C}_n) = P(a_n > \min_{j=1,\ldots,k_n} \lambda_{jn})$$

$$
P(\tilde{C}_{n,a} \neq \tilde{C}_n) = P(a_n > \lambda_{k_n,n})$$

$$
= P(\lambda_{k_n,n} - \lambda_{k_n} < a_n - \lambda_{k_n})$$

$$
\leq P(|\lambda_{k_n,n} - \lambda_{k_n}| \geq (1 - \beta)\lambda_{k_n})$$

$$
\leq P\left(\sup_{j=1,\ldots,k_n} |\lambda_{jn} - \lambda_j| \geq (1 - \beta)\lambda_{k_n}\right)$$

$$
\leq P\left(\|C_n - C\|_\mathcal{L} \geq (1 - \beta)\lambda_{k_n}\right)$$

$$
\leq \frac{K}{n(1 - \beta)^2\lambda_{k_n}^2}$$

with a constant $K > 0$, applying the Chebychev inequality and knowing that

$$
E\|C_n - C\|_\mathcal{L}^2 = O\left(\frac{1}{n}\right).$$

Note that

$$\|\tilde{C}_{n,a} - \tilde{C}_n\|_\mathcal{L} \leq a_n^2$$

and that

$$E\left\|\tilde{C}_n - C_n\|_\mathcal{L}^2 = E\left\|\sum_{j=1}^{k_n} \lambda_{jn} v_{jn} \otimes v_{jn} - \sum_{j=1}^{k_n} \lambda_j v_j \otimes v_j\right\|_\mathcal{L}^2$$

$$\leq 2E\left\|\sum_{j=1}^{k_n} \lambda_{jn} v_{jn} \otimes v_{jn} - \sum_{j=1}^{k_n} \lambda_j v_j \otimes v_j\right\|_\mathcal{L}^2 + 2E\left\|\sum_{j=1}^{k_n} \lambda_j v_j \otimes v_j - \sum_{j=1}^{k_n} \lambda_j v_j \otimes v_j\right\|_\mathcal{L}^2$$

$$\leq 2E\left\|\sum_{j=1}^{k_n} (\lambda_{jn} - \lambda_j) v_{jn} \otimes v_{jn}\right\|_\mathcal{L}^2 + 2E\left\|\sum_{j=1}^{k_n} \lambda_j (v_{jn} \otimes v_{jn} - v_j \otimes v_j)\right\|_\mathcal{L}^2.$$

But

$$E\left\|\sum_{j=1}^{k_n} (\lambda_{jn} - \lambda_j) v_{jn} \otimes v_{jn}\right\|_\mathcal{L}^2 \leq E\sup_{j \geq 1} |\lambda_{jn} - \lambda_j|^2$$

$$\leq E\|C_n - C\|_\mathcal{L}^2 = O\left(\frac{1}{n}\right),$$

by [1, Th. 4.1], and

$$v_{jn} \otimes v_{jn} - v_j \otimes v_j = v_{jn} \otimes v_{jn} - v'_{jn} \otimes v'_{jn}$$

$$= (v_{jn} - v'_{jn}) \otimes v_{jn} + v'_{jn} \otimes (v_{jn} - v'_{jn}),$$

9
Theorem 2 Suppose that \((H_1), (H_2)\) and \((H_3)\) hold, and that there exist \(\alpha > 0, 0 < \beta < 1, \varepsilon < 1/2\) and \(\gamma \geq 1\) such that

\[
\lambda_{k_n}^\gamma \leq a_n \leq \beta \lambda_{k_n},
\]

so

\[
E \left\| \sum_{j=1}^{k_n} \lambda_j (v_{jn} \otimes v_{jn} - v_j \otimes v_j) \right\|_L^2 \leq 2E \left\| \sum_{j=1}^{k_n} \lambda_j (v_{jn} - v_j') \otimes v_{jn} \right\|_L^2 + 2E \left\| \sum_{j=1}^{k_n} \lambda_j v_j' \otimes (v_{jn} - v_j') \right\|_L^2 \leq 4 \sup_{j=1, \ldots, k_n} |\lambda_j|^2 E \left\| v_{jn} - v_j' \right\|_L^2 \leq 4 |\lambda_1|^2 E \sup_{j=1, \ldots, k_n} \left\| v_{jn} - v_j' \right\|_L^2 \]

by [1, Lemma 4.3]. Accordingly by [1, Th. 4.1],

\[
E \left\| \sum_{j=1}^{k_n} \lambda_j (v_{jn} \otimes v_{jn} - v_j \otimes v_j) \right\|_L^2 = O \left(\frac{\Lambda_{k_n}^2}{n} \right).
\]

For the second term of \((8)\), we write

\[
E \left\| \tilde{\pi}^{k_n} DC^{-1}_{\pi} \tilde{\pi}^{k_n} - \pi^{k_n} DC^{-1}_{\pi} \pi^{k_n} \right\|_L^2 \leq 2E \left\| \tilde{\pi}^{k_n} DC^{-1}_{\pi} \pi^{k_n} - \pi^{k_n} DC^{-1}_{\pi} \pi^{k_n} \right\|_L^2 + 2E \left\| \tilde{\pi}^{k_n} DC^{-1}_{\pi} \pi^{k_n} \right\|_L^2 \leq 2E \left\| \tilde{\pi}^{k_n} DC^{-1}_{\pi} \pi^{k_n} \right\|_L^2 \leq \frac{L}{\lambda_{k_n}^2} E \left\| \tilde{\pi}^{k_n} - \pi^{k_n} \right\|_L^2 \]

with a constant \(L > 0\). Finally, notice that by a similar calculus as previously,

\[
E \left\| \tilde{\pi}^{k_n} - \pi^{k_n} \right\|_L^2 = E \left\| \sum_{j=1}^{k_n} v_{jn} \otimes v_{jn} - v_j' \otimes v_j' \right\|_L^2 = O \left(\frac{\Lambda_{k_n}^2}{n} \right).
\]

Consequently, \((8)\) entails

\[
E \| \tilde{\rho}_{n,a} - \rho \|_L^2 \leq \frac{c_0'}{na_n^2} + \frac{c_1'}{n \lambda_{k_n}^4} + \frac{c_2' \Lambda_{k_n}^2}{n a_n^2 \lambda_{k_n}^2} + \frac{c_3' \Lambda_{k_n}^2}{n \lambda_{k_n}^2} + 2\lambda_{k_n}^2 + 1
\]

with positive constants \(c_i'\). ■
then
\[E \| \hat{\rho}_{n,a} - \rho \|_L^2 = O \left(\frac{\lambda_{kn}^2}{n(1-2\varepsilon)\lambda_{kn}^{2(1+\gamma)}} \right) + O \left(\lambda_{kn}^2 \right) \]

Proof. It is an easy consequence of (6), using the inequalities \(\alpha \lambda_{kn} \leq a_n \) and \(\lambda_{kn+1} \leq \lambda_{kn} \). ■

Remark 3 The optimal choice of \(\lambda_{kn} \) is such that:
\[\lambda_{kn}^2 = \frac{c' \Lambda_{kn}^2}{n(1-2\varepsilon)} \lambda_{kn}^{2+2\gamma}, \text{ i.e. } \lambda_{kn}^{4+2\gamma} = \frac{c' \Lambda_{kn}^2}{n(1-2\varepsilon)}, c' > 0. \] (9)

The rate of convergence in quadratic mean is then of order
\[\lambda_{kn}^2 \asymp \left(\frac{\Lambda_{kn}^2}{n(1-2\varepsilon)} \right)^{1/(2+\gamma)}. \]

Example 3 If \(\lambda_j = ar^j \), where \(a > 0 \) and \(0 < r < 1 \), by (9), we get
\[r^{(6+2\gamma)kn} = \frac{d'}{n(1-2\varepsilon)}, d' > 0 \]
which yields
\[k_n = \left\lfloor \frac{\ln d' - (1-2\varepsilon) \ln n}{(6+2\gamma) \ln r} \right\rfloor. \]
The rate of convergence in quadratic mean is then of order
\[r^{-2(1-2\varepsilon)\ln n/(6+2\gamma)\ln r} = n^{-(1-2\varepsilon)/(\gamma+3)}. \]

Example 4 If \(\lambda_j = aj^{-\delta} \), where \(a > 0 \) and \(\delta > 1 \), a few calculations yield
\[\Lambda_{kn}^2 \approx Mk_n^{2(\delta+1)}, M \geq 0, \]
and by (9), we get
\[k_n = \left\lfloor e' n^{(1-2\varepsilon)/[2\delta(\gamma+3)+2]} \right\rfloor, e' > 0. \]
The rate of convergence in quadratic mean is then of order \(k_n^{-2\delta} \), i.e.
\[n^{-\delta(1-2\varepsilon)/[\delta(\gamma+3)+1]}. \]

Remark 4 When \(\varepsilon = 0 \) and in the most favorable case where \(\gamma = 1 \), the rate of convergence in example 4 is of order \(n^{-\delta/(4\delta+1)} \) and therefore asymptotically of order \(n^{-1/4} \) as \(\delta \to \infty \), which is the rate of convergence in example 3.
References

LISTE DES RAPPORTS TECHNIQUES

N°1 Février 1999 Autoregressive Hilbertian Process
Denis BOSQ

N°2 Avril 1999 Using the Entringer numbers to count the alternating permutations according a new parameter
Christiane POU PAR D

N°1 Mars 2000 Noncausality and functional discretization, limit theorems for an ARHX(1) process
Serge GUILLAS

N°2 Juin 2000 Sieve estimates via neural network for strong mixing processes
Jian tong ZHANG

N°3 Juillet 2000 Technical tools to evaluate Hausdorff-Besicovitch measure of random fractal sets
Alain LUCAS

N°1 Avril 2001 Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes
Serge GUILLAS